You are viewing documentation for Kubernetes version: v1.25

Kubernetes v1.25 documentation is no longer actively maintained. The version you are currently viewing is a static snapshot. For up-to-date information, see the latest version.

Jobs

A Job creates one or more Pods and will continue to retry execution of the Pods until a specified number of them successfully terminate. As pods successfully complete, the Job tracks the successful completions. When a specified number of successful completions is reached, the task (ie, Job) is complete. Deleting a Job will clean up the Pods it created. Suspending a Job will delete its active Pods until the Job is resumed again.

A simple case is to create one Job object in order to reliably run one Pod to completion. The Job object will start a new Pod if the first Pod fails or is deleted (for example due to a node hardware failure or a node reboot).

You can also use a Job to run multiple Pods in parallel.

If you want to run a Job (either a single task, or several in parallel) on a schedule, see CronJob.

Running an example Job

Here is an example Job config. It computes π to 2000 places and prints it out. It takes around 10s to complete.

apiVersion: batch/v1
kind: Job
metadata:
  name: pi
spec:
  template:
    spec:
      containers:
      - name: pi
        image: perl:5.34.0
        command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
      restartPolicy: Never
  backoffLimit: 4

You can run the example with this command:

kubectl apply -f https://kubernetes.io/examples/controllers/job.yaml

The output is similar to this:

job.batch/pi created

Check on the status of the Job with kubectl:


Name:           pi
Namespace:      default
Selector:       controller-uid=c9948307-e56d-4b5d-8302-ae2d7b7da67c
Labels:         controller-uid=c9948307-e56d-4b5d-8302-ae2d7b7da67c
                job-name=pi
Annotations:    kubectl.kubernetes.io/last-applied-configuration:
                  {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"pi","namespace":"default"},"spec":{"backoffLimit":4,"template":...
Parallelism:    1
Completions:    1
Start Time:     Mon, 02 Dec 2019 15:20:11 +0200
Completed At:   Mon, 02 Dec 2019 15:21:16 +0200
Duration:       65s
Pods Statuses:  0 Running / 1 Succeeded / 0 Failed
Pod Template:
  Labels:  controller-uid=c9948307-e56d-4b5d-8302-ae2d7b7da67c
           job-name=pi
  Containers:
   pi:
    Image:      perl:5.34.0
    Port:       <none>
    Host Port:  <none>
    Command:
      perl
      -Mbignum=bpi
      -wle
      print bpi(2000)
    Environment:  <none>
    Mounts:       <none>
  Volumes:        <none>
Events:
  Type    Reason            Age   From            Message
  ----    ------            ----  ----            -------
  Normal  SuccessfulCreate  14m   job-controller  Created pod: pi-5rwd7


apiVersion: batch/v1
kind: Job
metadata:
  annotations:
    kubectl.kubernetes.io/last-applied-configuration: |
      {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"pi","namespace":"default"},"spec":{"backoffLimit":4,"template":{"spec":{"containers":[{"command":["perl","-Mbignum=bpi","-wle","print bpi(2000)"],"image":"perl","name":"pi"}],"restartPolicy":"Never"}}}}
  creationTimestamp: "2022-06-15T08:40:15Z"
  generation: 1
  labels:
    controller-uid: 863452e6-270d-420e-9b94-53a54146c223
    job-name: pi
  name: pi
  namespace: default
  resourceVersion: "987"
  uid: 863452e6-270d-420e-9b94-53a54146c223
spec:
  backoffLimit: 4
  completionMode: NonIndexed
  completions: 1
  parallelism: 1
  selector:
    matchLabels:
      controller-uid: 863452e6-270d-420e-9b94-53a54146c223
  suspend: false
  template:
    metadata:
      creationTimestamp: null
      labels:
        controller-uid: 863452e6-270d-420e-9b94-53a54146c223
        job-name: pi
    spec:
      containers:
      - command:
        - perl
        - -Mbignum=bpi
        - -wle
        - print bpi(2000)
        image: perl:5.34.0
        imagePullPolicy: Always
        name: pi
        resources: {}
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: File
      dnsPolicy: ClusterFirst
      restartPolicy: Never
      schedulerName: default-scheduler
      securityContext: {}
      terminationGracePeriodSeconds: 30
status:
  active: 1
  ready: 1
  startTime: "2022-06-15T08:40:15Z"

To view completed Pods of a Job, use kubectl get pods.

To list all the Pods that belong to a Job in a machine readable form, you can use a command like this:

pods=$(kubectl get pods --selector=job-name=pi --output=jsonpath='{.items[*].metadata.name}')
echo $pods

The output is similar to this:

pi-5rwd7

Here, the selector is the same as the selector for the Job. The --output=jsonpath option specifies an expression with the name from each Pod in the returned list.

View the standard output of one of the pods:

kubectl logs $pods

The output is similar to this:

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632788659361533818279682303019520353018529689957736225994138912497217752834791315155748572424541506959508295331168617278558890750983817546374649393192550604009277016711390098488240128583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694912933136770289891521047521620569660240580381501935112533824300355876402474964732639141992726042699227967823547816360093417216412199245863150302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938000816470600161452491921732172147723501414419735685481613611573525521334757418494684385233239073941433345477624168625189835694855620992192221842725502542568876717904946016534668049886272327917860857843838279679766814541009538837863609506800642251252051173929848960841284886269456042419652850222106611863067442786220391949450471237137869609563643719172874677646575739624138908658326459958133904780275901

Writing a Job spec

As with all other Kubernetes config, a Job needs apiVersion, kind, and metadata fields. Its name must be a valid DNS subdomain name.

A Job also needs a .spec section.

Pod Template

The .spec.template is the only required field of the .spec.

The .spec.template is a pod template. It has exactly the same schema as a Pod, except it is nested and does not have an apiVersion or kind.

In addition to required fields for a Pod, a pod template in a Job must specify appropriate labels (see pod selector) and an appropriate restart policy.

Only a RestartPolicy equal to Never or OnFailure is allowed.

Pod selector

The .spec.selector field is optional. In almost all cases you should not specify it. See section specifying your own pod selector.

Parallel execution for Jobs

There are three main types of task suitable to run as a Job:

  1. Non-parallel Jobs
    • normally, only one Pod is started, unless the Pod fails.
    • the Job is complete as soon as its Pod terminates successfully.
  2. Parallel Jobs with a fixed completion count:
    • specify a non-zero positive value for .spec.completions.
    • the Job represents the overall task, and is complete when there are .spec.completions successful Pods.
    • when using .spec.completionMode="Indexed", each Pod gets a different index in the range 0 to .spec.completions-1.
  3. Parallel Jobs with a work queue:
    • do not specify .spec.completions, default to .spec.parallelism.
    • the Pods must coordinate amongst themselves or an external service to determine what each should work on. For example, a Pod might fetch a batch of up to N items from the work queue.
    • each Pod is independently capable of determining whether or not all its peers are done, and thus that the entire Job is done.
    • when any Pod from the Job terminates with success, no new Pods are created.
    • once at least one Pod has terminated with success and all Pods are terminated, then the Job is completed with success.
    • once any Pod has exited with success, no other Pod should still be doing any work for this task or writing any output. They should all be in the process of exiting.

For a non-parallel Job, you can leave both .spec.completions and .spec.parallelism unset. When both are unset, both are defaulted to 1.

For a fixed completion count Job, you should set .spec.completions to the number of completions needed. You can set .spec.parallelism, or leave it unset and it will default to 1.

For a work queue Job, you must leave .spec.completions unset, and set .spec.parallelism to a non-negative integer.

For more information about how to make use of the different types of job, see the job patterns section.

Controlling parallelism

The requested parallelism (.spec.parallelism) can be set to any non-negative value. If it is unspecified, it defaults to 1. If it is specified as 0, then the Job is effectively paused until it is increased.

Actual parallelism (number of pods running at any instant) may be more or less than requested parallelism, for a variety of reasons:

  • For fixed completion count Jobs, the actual number of pods running in parallel will not exceed the number of remaining completions. Higher values of .spec.parallelism are effectively ignored.
  • For work queue Jobs, no new Pods are started after any Pod has succeeded -- remaining Pods are allowed to complete, however.
  • If the Job Controller has not had time to react.
  • If the Job controller failed to create Pods for any reason (lack of ResourceQuota, lack of permission, etc.), then there may be fewer pods than requested.
  • The Job controller may throttle new Pod creation due to excessive previous pod failures in the same Job.
  • When a Pod is gracefully shut down, it takes time to stop.

Completion mode

FEATURE STATE: Kubernetes v1.24 [stable]

Jobs with fixed completion count - that is, jobs that have non null .spec.completions - can have a completion mode that is specified in .spec.completionMode:

  • NonIndexed (default): the Job is considered complete when there have been .spec.completions successfully completed Pods. In other words, each Pod completion is homologous to each other. Note that Jobs that have null .spec.completions are implicitly NonIndexed.

  • Indexed: the Pods of a Job get an associated completion index from 0 to .spec.completions-1. The index is available through three mechanisms:

    • The Pod annotation batch.kubernetes.io/job-completion-index.
    • As part of the Pod hostname, following the pattern $(job-name)-$(index). When you use an Indexed Job in combination with a Service, Pods within the Job can use the deterministic hostnames to address each other via DNS. For more information about how to configure this, see Job with Pod-to-Pod Communication.
    • From the containerized task, in the environment variable JOB_COMPLETION_INDEX.

    The Job is considered complete when there is one successfully completed Pod for each index. For more information about how to use this mode, see Indexed Job for Parallel Processing with Static Work Assignment. Note that, although rare, more than one Pod could be started for the same index, but only one of them will count towards the completion count.

Handling Pod and container failures

A container in a Pod may fail for a number of reasons, such as because the process in it exited with a non-zero exit code, or the container was killed for exceeding a memory limit, etc. If this happens, and the .spec.template.spec.restartPolicy = "OnFailure", then the Pod stays on the node, but the container is re-run. Therefore, your program needs to handle the case when it is restarted locally, or else specify .spec.template.spec.restartPolicy = "Never". See pod lifecycle for more information on restartPolicy.

An entire Pod can also fail, for a number of reasons, such as when the pod is kicked off the node (node is upgraded, rebooted, deleted, etc.), or if a container of the Pod fails and the .spec.template.spec.restartPolicy = "Never". When a Pod fails, then the Job controller starts a new Pod. This means that your application needs to handle the case when it is restarted in a new pod. In particular, it needs to handle temporary files, locks, incomplete output and the like caused by previous runs.

Note that even if you specify .spec.parallelism = 1 and .spec.completions = 1 and .spec.template.spec.restartPolicy = "Never", the same program may sometimes be started twice.

If you do specify .spec.parallelism and .spec.completions both greater than 1, then there may be multiple pods running at once. Therefore, your pods must also be tolerant of concurrency.

Pod backoff failure policy

There are situations where you want to fail a Job after some amount of retries due to a logical error in configuration etc. To do so, set .spec.backoffLimit to specify the number of retries before considering a Job as failed. The back-off limit is set by default to 6. Failed Pods associated with the Job are recreated by the Job controller with an exponential back-off delay (10s, 20s, 40s ...) capped at six minutes.

The number of retries is calculated in two ways:

  • The number of Pods with .status.phase = "Failed".
  • When using restartPolicy = "OnFailure", the number of retries in all the containers of Pods with .status.phase equal to Pending or Running.

If either of the calculations reaches the .spec.backoffLimit, the Job is considered failed.

When the JobTrackingWithFinalizers feature is disabled, the number of failed Pods is only based on Pods that are still present in the API.

Job termination and cleanup

When a Job completes, no more Pods are created, but the Pods are usually not deleted either. Keeping them around allows you to still view the logs of completed pods to check for errors, warnings, or other diagnostic output. The job object also remains after it is completed so that you can view its status. It is up to the user to delete old jobs after noting their status. Delete the job with kubectl (e.g. kubectl delete jobs/pi or kubectl delete -f ./job.yaml). When you delete the job using kubectl, all the pods it created are deleted too.

By default, a Job will run uninterrupted unless a Pod fails (restartPolicy=Never) or a Container exits in error (restartPolicy=OnFailure), at which point the Job defers to the .spec.backoffLimit described above. Once .spec.backoffLimit has been reached the Job will be marked as failed and any running Pods will be terminated.

Another way to terminate a Job is by setting an active deadline. Do this by setting the .spec.activeDeadlineSeconds field of the Job to a number of seconds. The activeDeadlineSeconds applies to the duration of the job, no matter how many Pods are created. Once a Job reaches activeDeadlineSeconds, all of its running Pods are terminated and the Job status will become type: Failed with reason: DeadlineExceeded.

Note that a Job's .spec.activeDeadlineSeconds takes precedence over its .spec.backoffLimit. Therefore, a Job that is retrying one or more failed Pods will not deploy additional Pods once it reaches the time limit specified by activeDeadlineSeconds, even if the backoffLimit is not yet reached.

Example:

apiVersion: batch/v1
kind: Job
metadata:
  name: pi-with-timeout
spec:
  backoffLimit: 5
  activeDeadlineSeconds: 100
  template:
    spec:
      containers:
      - name: pi
        image: perl:5.34.0
        command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
      restartPolicy: Never

Note that both the Job spec and the Pod template spec within the Job have an activeDeadlineSeconds field. Ensure that you set this field at the proper level.

Keep in mind that the restartPolicy applies to the Pod, and not to the Job itself: there is no automatic Job restart once the Job status is type: Failed. That is, the Job termination mechanisms activated with .spec.activeDeadlineSeconds and .spec.backoffLimit result in a permanent Job failure that requires manual intervention to resolve.

Clean up finished jobs automatically

Finished Jobs are usually no longer needed in the system. Keeping them around in the system will put pressure on the API server. If the Jobs are managed directly by a higher level controller, such as CronJobs, the Jobs can be cleaned up by CronJobs based on the specified capacity-based cleanup policy.

TTL mechanism for finished Jobs

FEATURE STATE: Kubernetes v1.23 [stable]

Another way to clean up finished Jobs (either Complete or Failed) automatically is to use a TTL mechanism provided by a TTL controller for finished resources, by specifying the .spec.ttlSecondsAfterFinished field of the Job.

When the TTL controller cleans up the Job, it will delete the Job cascadingly, i.e. delete its dependent objects, such as Pods, together with the Job. Note that when the Job is deleted, its lifecycle guarantees, such as finalizers, will be honored.

For example:

apiVersion: batch/v1
kind: Job
metadata:
  name: pi-with-ttl
spec:
  ttlSecondsAfterFinished: 100
  template:
    spec:
      containers:
      - name: pi
        image: perl:5.34.0
        command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
      restartPolicy: Never

The Job pi-with-ttl will be eligible to be automatically deleted, 100 seconds after it finishes.

If the field is set to 0, the Job will be eligible to be automatically deleted immediately after it finishes. If the field is unset, this Job won't be cleaned up by the TTL controller after it finishes.

Job patterns

The Job object can be used to support reliable parallel execution of Pods. The Job object is not designed to support closely-communicating parallel processes, as commonly found in scientific computing. It does support parallel processing of a set of independent but related work items. These might be emails to be sent, frames to be rendered, files to be transcoded, ranges of keys in a NoSQL database to scan, and so on.

In a complex system, there may be multiple different sets of work items. Here we are just considering one set of work items that the user wants to manage together — a batch job.

There are several different patterns for parallel computation, each with strengths and weaknesses. The tradeoffs are:

  • One Job object for each work item, vs. a single Job object for all work items. The latter is better for large numbers of work items. The former creates some overhead for the user and for the system to manage large numbers of Job objects.
  • Number of pods created equals number of work items, vs. each Pod can process multiple work items. The former typically requires less modification to existing code and containers. The latter is better for large numbers of work items, for similar reasons to the previous bullet.
  • Several approaches use a work queue. This requires running a queue service, and modifications to the existing program or container to make it use the work queue. Other approaches are easier to adapt to an existing containerised application.

The tradeoffs are summarized here, with columns 2 to 4 corresponding to the above tradeoffs. The pattern names are also links to examples and more detailed description.

PatternSingle Job objectFewer pods than work items?Use app unmodified?
Queue with Pod Per Work Itemsometimes
Queue with Variable Pod Count
Indexed Job with Static Work Assignment
Job Template Expansion
Job with Pod-to-Pod Communicationsometimessometimes

When you specify completions with .spec.completions, each Pod created by the Job controller has an identical spec. This means that all pods for a task will have the same command line and the same image, the same volumes, and (almost) the same environment variables. These patterns are different ways to arrange for pods to work on different things.

This table shows the required settings for .spec.parallelism and .spec.completions for each of the patterns. Here, W is the number of work items.

Pattern.spec.completions.spec.parallelism
Queue with Pod Per Work ItemWany
Queue with Variable Pod Countnullany
Indexed Job with Static Work AssignmentWany
Job Template Expansion1should be 1
Job with Pod-to-Pod CommunicationWW

Advanced usage

Suspending a Job

FEATURE STATE: Kubernetes v1.24 [stable]

When a Job is created, the Job controller will immediately begin creating Pods to satisfy the Job's requirements and will continue to do so until the Job is complete. However, you may want to temporarily suspend a Job's execution and resume it later, or start Jobs in suspended state and have a custom controller decide later when to start them.

To suspend a Job, you can update the .spec.suspend field of the Job to true; later, when you want to resume it again, update it to false. Creating a Job with .spec.suspend set to true will create it in the suspended state.

When a Job is resumed from suspension, its .status.startTime field will be reset to the current time. This means that the .spec.activeDeadlineSeconds timer will be stopped and reset when a Job is suspended and resumed.

When you suspend a Job, any running Pods that don't have a status of Completed will be terminated. with a SIGTERM signal. The Pod's graceful termination period will be honored and your Pod must handle this signal in this period. This may involve saving progress for later or undoing changes. Pods terminated this way will not count towards the Job's completions count.

An example Job definition in the suspended state can be like so:

kubectl get job myjob -o yaml
apiVersion: batch/v1
kind: Job
metadata:
  name: myjob
spec:
  suspend: true
  parallelism: 1
  completions: 5
  template:
    spec:
      ...

You can also toggle Job suspension by patching the Job using the command line.

Suspend an active Job:

kubectl patch job/myjob --type=strategic --patch '{"spec":{"suspend":true}}'

Resume a suspended Job:

kubectl patch job/myjob --type=strategic --patch '{"spec":{"suspend":false}}'

The Job's status can be used to determine if a Job is suspended or has been suspended in the past:

kubectl get jobs/myjob -o yaml
apiVersion: batch/v1
kind: Job
# .metadata and .spec omitted
status:
  conditions:
  - lastProbeTime: "2021-02-05T13:14:33Z"
    lastTransitionTime: "2021-02-05T13:14:33Z"
    status: "True"
    type: Suspended
  startTime: "2021-02-05T13:13:48Z"

The Job condition of type "Suspended" with status "True" means the Job is suspended; the lastTransitionTime field can be used to determine how long the Job has been suspended for. If the status of that condition is "False", then the Job was previously suspended and is now running. If such a condition does not exist in the Job's status, the Job has never been stopped.

Events are also created when the Job is suspended and resumed:

kubectl describe jobs/myjob
Name:           myjob
...
Events:
  Type    Reason            Age   From            Message
  ----    ------            ----  ----            -------
  Normal  SuccessfulCreate  12m   job-controller  Created pod: myjob-hlrpl
  Normal  SuccessfulDelete  11m   job-controller  Deleted pod: myjob-hlrpl
  Normal  Suspended         11m   job-controller  Job suspended
  Normal  SuccessfulCreate  3s    job-controller  Created pod: myjob-jvb44
  Normal  Resumed           3s    job-controller  Job resumed

The last four events, particularly the "Suspended" and "Resumed" events, are directly a result of toggling the .spec.suspend field. In the time between these two events, we see that no Pods were created, but Pod creation restarted as soon as the Job was resumed.

Mutable Scheduling Directives

FEATURE STATE: Kubernetes v1.23 [beta]

In most cases a parallel job will want the pods to run with constraints, like all in the same zone, or all either on GPU model x or y but not a mix of both.

The suspend field is the first step towards achieving those semantics. Suspend allows a custom queue controller to decide when a job should start; However, once a job is unsuspended, a custom queue controller has no influence on where the pods of a job will actually land.

This feature allows updating a Job's scheduling directives before it starts, which gives custom queue controllers the ability to influence pod placement while at the same time offloading actual pod-to-node assignment to kube-scheduler. This is allowed only for suspended Jobs that have never been unsuspended before.

The fields in a Job's pod template that can be updated are node affinity, node selector, tolerations, labels and annotations.

Specifying your own Pod selector

Normally, when you create a Job object, you do not specify .spec.selector. The system defaulting logic adds this field when the Job is created. It picks a selector value that will not overlap with any other jobs.

However, in some cases, you might need to override this automatically set selector. To do this, you can specify the .spec.selector of the Job.

Be very careful when doing this. If you specify a label selector which is not unique to the pods of that Job, and which matches unrelated Pods, then pods of the unrelated job may be deleted, or this Job may count other Pods as completing it, or one or both Jobs may refuse to create Pods or run to completion. If a non-unique selector is chosen, then other controllers (e.g. ReplicationController) and their Pods may behave in unpredictable ways too. Kubernetes will not stop you from making a mistake when specifying .spec.selector.

Here is an example of a case when you might want to use this feature.

Say Job old is already running. You want existing Pods to keep running, but you want the rest of the Pods it creates to use a different pod template and for the Job to have a new name. You cannot update the Job because these fields are not updatable. Therefore, you delete Job old but leave its pods running, using kubectl delete jobs/old --cascade=orphan. Before deleting it, you make a note of what selector it uses:

kubectl get job old -o yaml

The output is similar to this:

kind: Job
metadata:
  name: old
  ...
spec:
  selector:
    matchLabels:
      controller-uid: a8f3d00d-c6d2-11e5-9f87-42010af00002
  ...

Then you create a new Job with name new and you explicitly specify the same selector. Since the existing Pods have label controller-uid=a8f3d00d-c6d2-11e5-9f87-42010af00002, they are controlled by Job new as well.

You need to specify manualSelector: true in the new Job since you are not using the selector that the system normally generates for you automatically.

kind: Job
metadata:
  name: new
  ...
spec:
  manualSelector: true
  selector:
    matchLabels:
      controller-uid: a8f3d00d-c6d2-11e5-9f87-42010af00002
  ...

The new Job itself will have a different uid from a8f3d00d-c6d2-11e5-9f87-42010af00002. Setting manualSelector: true tells the system that you know what you are doing and to allow this mismatch.

Pod failure policy

FEATURE STATE: Kubernetes v1.25 [alpha]

A Pod failure policy, defined with the .spec.podFailurePolicy field, enables your cluster to handle Pod failures based on the container exit codes and the Pod conditions.

In some situations, you may want to have a better control when handling Pod failures than the control provided by the Pod backoff failure policy, which is based on the Job's .spec.backoffLimit. These are some examples of use cases:

  • To optimize costs of running workloads by avoiding unnecessary Pod restarts, you can terminate a Job as soon as one of its Pods fails with an exit code indicating a software bug.
  • To guarantee that your Job finishes even if there are disruptions, you can ignore Pod failures caused by disruptions (such preemption, API-initiated eviction or taint-based eviction) so that they don't count towards the .spec.backoffLimit limit of retries.

You can configure a Pod failure policy, in the .spec.podFailurePolicy field, to meet the above use cases. This policy can handle Pod failures based on the container exit codes and the Pod conditions.

Here is a manifest for a Job that defines a podFailurePolicy:

apiVersion: batch/v1
kind: Job
metadata:
  name: job-pod-failure-policy-example
spec:
  completions: 12
  parallelism: 3
  template:
    spec:
      restartPolicy: Never
      containers:
      - name: main
        image: docker.io/library/bash:5
        command: ["bash"]        # example command simulating a bug which triggers the FailJob action
        args:
        - -c
        - echo "Hello world!" && sleep 5 && exit 42
  backoffLimit: 6
  podFailurePolicy:
    rules:
    - action: FailJob
      onExitCodes:
        containerName: main      # optional
        operator: In             # one of: In, NotIn
        values: [42]
    - action: Ignore             # one of: Ignore, FailJob, Count
      onPodConditions:
      - type: DisruptionTarget   # indicates Pod disruption

In the example above, the first rule of the Pod failure policy specifies that the Job should be marked failed if the main container fails with the 42 exit code. The following are the rules for the main container specifically:

  • an exit code of 0 means that the container succeeded
  • an exit code of 42 means that the entire Job failed
  • any other exit code represents that the container failed, and hence the entire Pod. The Pod will be re-created if the total number of restarts is below backoffLimit. If the backoffLimit is reached the entire Job failed.

The second rule of the Pod failure policy, specifying the Ignore action for failed Pods with condition DisruptionTarget excludes Pod disruptions from being counted towards the .spec.backoffLimit limit of retries.

These are some requirements and semantics of the API:

  • if you want to use a .spec.podFailurePolicy field for a Job, you must also define that Job's pod template with .spec.restartPolicy set to Never.
  • the Pod failure policy rules you specify under spec.podFailurePolicy.rules are evaluated in order. Once a rule matches a Pod failure, the remaining rules are ignored. When no rule matches the Pod failure, the default handling applies.
  • you may want to restrict a rule to a specific container by specifing its name inspec.podFailurePolicy.rules[*].containerName. When not specified the rule applies to all containers. When specified, it should match one the container or initContainer names in the Pod template.
  • you may specify the action taken when a Pod failure policy is matched by spec.podFailurePolicy.rules[*].action. Possible values are:
    • FailJob: use to indicate that the Pod's job should be marked as Failed and all running Pods should be terminated.
    • Ignore: use to indicate that the counter towards the .spec.backoffLimit should not be incremented and a replacement Pod should be created.
    • Count: use to indicate that the Pod should be handled in the default way. The counter towards the .spec.backoffLimit should be incremented.

Job tracking with finalizers

FEATURE STATE: Kubernetes v1.23 [beta]

When this feature isn't enabled, the Job Controller relies on counting the Pods that exist in the cluster to track the Job status, that is, to keep the counters for succeeded and failed Pods. However, Pods can be removed for a number of reasons, including:

  • The garbage collector that removes orphan Pods when a Node goes down.
  • The garbage collector that removes finished Pods (in Succeeded or Failed phase) after a threshold.
  • Human intervention to delete Pods belonging to a Job.
  • An external controller (not provided as part of Kubernetes) that removes or replaces Pods.

If you enable the JobTrackingWithFinalizers feature for your cluster, the control plane keeps track of the Pods that belong to any Job and notices if any such Pod is removed from the API server. To do that, the Job controller creates Pods with the finalizer batch.kubernetes.io/job-tracking. The controller removes the finalizer only after the Pod has been accounted for in the Job status, allowing the Pod to be removed by other controllers or users.

The Job controller uses the new algorithm for new Jobs only. Jobs created before the feature is enabled are unaffected. You can determine if the Job controller is tracking a Job using Pod finalizers by checking if the Job has the annotation batch.kubernetes.io/job-tracking. You should not manually add or remove this annotation from Jobs.

Alternatives

Bare Pods

When the node that a Pod is running on reboots or fails, the pod is terminated and will not be restarted. However, a Job will create new Pods to replace terminated ones. For this reason, we recommend that you use a Job rather than a bare Pod, even if your application requires only a single Pod.

Replication Controller

Jobs are complementary to Replication Controllers. A Replication Controller manages Pods which are not expected to terminate (e.g. web servers), and a Job manages Pods that are expected to terminate (e.g. batch tasks).

As discussed in Pod Lifecycle, Job is only appropriate for pods with RestartPolicy equal to OnFailure or Never. (Note: If RestartPolicy is not set, the default value is Always.)

Single Job starts controller Pod

Another pattern is for a single Job to create a Pod which then creates other Pods, acting as a sort of custom controller for those Pods. This allows the most flexibility, but may be somewhat complicated to get started with and offers less integration with Kubernetes.

One example of this pattern would be a Job which starts a Pod which runs a script that in turn starts a Spark master controller (see spark example), runs a spark driver, and then cleans up.

An advantage of this approach is that the overall process gets the completion guarantee of a Job object, but maintains complete control over what Pods are created and how work is assigned to them.

What's next

Last modified March 12, 2024 at 8:26 AM PST: Merge pull request #45495 from steve-hardman/fix-1.25 (8eb33af)